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One-dimensional supramolecular aggregates can form networks at exceedingly low concentrations. Recent
experiments in several laboratories, including our own, have demonstrated the formation of gels by these
systems at concentrations well under 1% by weight. The systems of interest in our laboratory form either
cylindrical nanofibers or ribbons as a result of strong noncovalent interactions among monomers. The stiffness
and interaction energies among these thread-like objects can vary significantly depending on the chemical
structure of the monomers used. We have used Monte Carlo simulations to study the structure of the threads
and their ability to form networks through bundle formation. The persistence length of the threads was found
to be strongly affected not only by stiffness, but also by the strength of attractive two-body interactions among
thread segments. The relative values of stiffness and attractive two-body interaction strength determine if
threads collapse or create bundles. Only in the presence of sufficiently long threads and bundle formation can
these systems assemble into networks of high connectivity.
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I. INTRODUCTION

Gels made from synthetic and biological molecules are
useful in a broad range of applications that include food
technology, cosmetics, drug delivery, tissue engineering, cell
transplantation, and many others �1–5�. Gels are typically
networks formed by objects such as polymers, colloids, and
small molecules known as gelators. In this paper we focus on
networks formed by one-dimensional supramolecular struc-
tures. There is an extensive literature on such structures,
which consist of polymers formed by noncovalent associa-
tion among monomer molecules that do not necessarily form
networks �6,7�. However, the thread-like objects of interest
here have the capacity to form networks and most important,
have a well defined cross section formed by the self-
assembly of molecules. The cross sections can be either
single molecules �4� or a specific assembly of several mol-
ecules �8–10�. The well defined cross section, which distin-
guishes them from ordinary polymers, offers properties such
as extraordinary persistence length. One consequence of a
long persistence length is the possibility of forming networks
at extremely low concentration of molecules. Our laboratory
reported recently on systems in which the cross section is
formed by the assembly of peptide amphiphile molecules in
water �8,9� or dendron rodcoil molecules in organic solvents
�10�.

The systems of interest here can be regarded as hierarchi-
cal structures with two different levels of organization, which
are both driven by noncovalent bonds �i.e., hydrogen bond-

ing, �-� stacking, and metal-coordination bonds�. The gela-
tor molecules assemble to form the threads, and attractive
two-body interactions provide the connectivity of the net-
work. Since these systems involve only noncovalent bonds,
they are reversible and highly sensitive to ionic strength, pH,
temperature, concentration, and solvent. The interthread con-
nectivity could either be in the form of defects �i.e., fusion of
threads at a junction point�, or via attractive short-range two-
body interactions �such as bundling of threads through hy-
drogen bonding�. The reversible hydrogel formed by self-
assembling artificial proteins is an example in which the
junctions are formed by bundling of �-helices �11�. It is im-
portant to note that in networks formed by supramolecular
threads, the critical concentrations for gel formation lie well
below those associated with mesophase formation �i.e., liq-
uid crystals� �12�. In fact gelation could be observed at con-
centrations as low as 1.0% �4,5,10,13�. As suggested before,
this is a consequence of an extremely long persistence length
of the thread-like objects �8–10,12,14�.

Self-assembled networks have also been the subject of
many recent theoretical studies �15–23�. The theory of ther-
moreversible gels formed by associating polymers is similar
to the problem under consideration here. Even though it does
not involve thread formation, it deals with the problem of
network formation as a result of a finite number of bonding
sites per chain �19–23�. On the other hand, end-linked poly-
mers provide a special case, where the functionality per
chain is limited to 2. One could obtain gels from end-linked
polymers via multifunctional crosslinkers, and optimum val-
ues of the fraction of crosslinkers to thread ends have been
previously studied such that defect-free network structures
are formed �24�. An interesting case is offered by polymers
in which a thermally driven conformational change leads to
network formation �22�. This system is unique in the sense
that the number of network junction sites is controlled by
external effects. Good examples for such systems are natural
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and synthetic polypeptides, which can undergo helix-coil
transitions.

Living polymers, where the polymerization of the mono-
mers is reversible, also provides a closely related system to
the problem under consideration �25–32�. Chain properties
such as molecular weight distribution and radius of gyration,
as a function of density and temperature, have been previ-
ously studied in the absence of attractive interactions among
polymer chains �25�. Milchev et al. have studied living semi-
flexible polymers with attractive interactions using two- and
three-dimensional grand canonical ensemble simulations
�26�. These authors looked at the order-disorder transition
and cluster-size distribution of living polymers, and con-
cluded that in 3D systems, the phase transition is always first
order and chain lengths follow an exponential probability
distribution. Furthermore, Milchev et al. have also shown
that molecular weight distribution in the dilute limit can be
described by the Schultz-Zimm distribution and becomes
purely exponential in the semidilute limit �33�. The gel tran-
sition for living polymers has been studied by Ballone and
Jones in the presence of multifunctional active sites �32�.

As mentioned above, an important feature of the su-
pramolecular threads with a defined cross section is their
extremely high persistence length. Bug et al. have studied
the role of attractive two-body interactions on the percolation
threshold for rod-like objects �17,18�. However, bundle for-
mation was not taken into account in this work. Another
important question is how the bundling of objects affects the
critical concentration to create a network. In addition to
polymers and low molar mass gelator molecules, networks
have also been observed in ferromagnetic colloids, and the-
oretical work has been carried out to explain their formation
�15,16�.

In this work we study the formation of one-dimensional
supramolecular threads from monomers, and the simulta-
neous formation of networks through attractive two-body in-
teractions. We specifically study the role of attractive two-
body interactions and thread stiffness on the structural
properties of the threads and networks formed, whereas the
temperature and concentration are kept constant in all simu-
lations. Furthermore, we discuss the role of bundling and
high persistence length on the connectivity of the network.

II. MODEL

On- and off-lattice Monte Carlo simulations have been
widely used for simulation of polymeric systems �34,35�.
Off-lattice simulations provide a continuum representation of
the threads, and therefore do not impose artificial limitations
on bond lengths and bond angles. On the other hand lattice
Monte Carlo simulations are computationally more attractive
due to the discretized configurational space that enables the
representation of the configuration of the system with integer
numbers only. However, it is also well known that the lattice
artifacts might significantly alter the simulation results in
polymeric systems. Simple cubic lattice models of polymeric
systems lead to configurations that are not possible to reach
and not possible to relax, and also limit the bond angles to 0°
and 90°, and the bond length to the lattice size �36,37�. The

bond fluctuation method �37,38� �BFM� has been employed
to overcome such problems, especially in simulations of
dense polymeric systems. In 3D implementation of this
model, eight lattice sites on a cubic lattice represent one
monomer along the chain. Unlike the classical lattice simu-
lations, BFM allows the bond length to fluctuate within a
certain range. The range of allowed bond lengths is chosen
such that excluded volume constraints are satisfied �i.e., no
overlaps�, and no bond intersections can take place during
the Monte Carlo moves.

Here, we use a variation of BFM on hexagonal lattice.
The model system is composed of individual gelator mol-
ecules represented by point particles on the lattice. Each ge-
lator can make up to two bonds of energy � �Fig. 1�a��,
leading to linear thread formation. In addition to these bonds,
each gelator has attractive two-body interactions of energy �
with gelators within the cutoff radius �Fig. 1�b��. It is impor-
tant to note that the bonding interactions are considered to be
an order of magnitude stronger compared to two-body inter-
actions. For each gelator n� represents the number of bonds
and n� represents number of contacts formed by two-body
interactions. The threads formed by polymerization of these
gelators are semiflexible �Fig. 1�c��, where the stiffness is
represented by a harmonic potential of strength �. For any
three gelators bonded along a thread, there is an energetic
contribution of

E� = ��1 − �/��2, �1�

where � is the angle between the three gelators.
The simulations start with a random distribution of gela-

tors on the hexagonal lattice with unit cell dimensions a.
Initially the gelators have no bonds �Fig. 2�a��. Each gelator
has an excluded volume such that no two gelators can be
closer than 4a. If the distance l between two gelators satisfies
the condition 4a	 l	6a, bonds can be formed. This specific
choice of constraints guarantees the condition for no bond
crossing during the simulation, and furthermore enables a
wide range of values for bond length and angle. The cutoff
radius for attractive two-body interaction is set equivalent to
the maximum bond length �6a�. In this study no energetic
term is included for bond stretching. At each Monte Carlo
step a target gelator is chosen at random, and a new position
for this target gelator is randomly selected among the 12
nearest neighbor lattice points. If this new site does not vio-

FIG. 1. Energy of the model includes contributions from bonds
�a�, attractive two-body interactions �b� �of strength � and �, respec-
tively�, and thread stiffness �c� �of strength ��.
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late any excluded volume constraints, the energies of the old
and new configurations are calculated. In order to calculate
the energy of the old configuration, the number of bonds n�o
as well as any bending energy due to thread stiffness are
taken into account. Furthermore, the attractive two-body in-
teractions with gelators within the cutoff radius �where n�o is
the number of these interactions� are included in the energy.
This yields an energy of

Eold = − �n�o − �n�o + �
i

��1 − �i/��2. �2�

The bending energy term is only present if the target gelator
is part of a thread with more than two gelators, and the index
i covers all bond angles the target gelator participates in. For
the new configuration, first all the existing bonds of the tar-
get gelator are checked. If any of the old bonds are broken
�i.e., the distance between two bonded gelators is larger than
6a�, or if any of the two bonding capacities are available
�n�o
2�, a new bonding partner is searched. If there are any
gelators with n�
2 within the 6a cutoff radius, one �n�o

=1� or two �n�o=0� gelators are chosen at random. Finally,
the energy of this new configuration is obtained for n�n bonds
and n�n two-body interactions, as

Enew = − �n�n − �n�n + �
i

��1 − �i/��2. �3�

Next, using the energy difference �Enew−Eold� the Boltzmann
factor is calculated and the move is accepted or rejected ac-
cording to the Metropolis algorithm. It is important to note
that in this study we did not include a statistical factor for the
formation and breaking of bonds other than the energetic
contributions. The simulations are done on a hexagonal lat-
tice with periodic boundary conditions and of size 400a in all
three dimensions. For each set of molecular parameters, a
system with 20 000 gelators, which corresponds to 2% vol-
ume fraction in a densely packed system, is used, and the
results are obtained by taking an average over three different

runs with different random seeds. In order to accelerate the
simulation, the simulation box is divided into cells �34�.

III. RESULTS AND DISCUSSION

Our model includes three parameters to represent the mo-
lecular interactions in the experimental system. The param-
eter � represents the strength of bonding along the threads
and is kept constant as � /kBT=10.0 for all simulations. For
simplicity in the following sections rescaled values of �̂
=� /kBT and �̂=� /kBT values will be used. In Figs.
2�b�–2�f�, snapshots from simulations with different values
of thread stiffness � and two-body interaction strength � are
given. For systems with no two-body attraction ��̂=0.0 and
�̂=6.28� the gelators simply form linear threads which are
dispersed into the solution, just as one would observe in a
polymerization reaction. The white colored thread monomers
represent the gelators that have no two-body interactions,
whereas the blue color represents the gelators that have at
least one two-body interaction. In this case, two-body inter-
actions are not stable against thermal fluctuations, and there-
fore the threads remain disconnected. A system with a mod-
erate two-body attraction ��̂=1.0� and highly flexible threads
��̂=1.57� yields a solution of collapsed globules �Fig. 2�c��.
During polymerization, threads simply collapse onto them-
selves due to attractive two-body interactions. Notice that
there is no order within these collapsed structures. With the
same two-body interaction strength ��̂=1.0, �̂=6.28�, if one
increases the thread stiffness the structure of the aggregates
completely changes �Fig. 2�d��. Now the threads have a
much higher persistence length and they do not form col-
lapsed globules. Instead, by forming bundles they satisfy the
two-body attractive forces, while avoiding the penalty of
thread bending. The presence of long threads that participate
in more than one bundle provides the connectivity among
these ordered bundles; in other words, one observes a con-
nected network of bundles. Further increase of the thread
stiffness simply increases the order within these bundles

FIG. 2. �Color online� Snapshots from the
simulation, where blue �dark� and white color
represents the gelators with and without contacts
formed by two-body attractive interactions, re-
spectively. Only a representative part of the simu-
lation box is shown. �a� Initial configuration of
the system, randomly distributed nonbonded ge-
lators. �b� For �̂=0.0 and �̂=6.28, the gelators
polymerize to form the dispersed threads. �c� For
�̂=1.0 and �̂=1.57, highly flexible threads form
collapsed globules due to attractive two-body in-
teractions. �d� For �̂=1.0 and �̂=6.28, the stiff-
ness of the threads prevents collapsing, and high
persistence length threads with attractive two-
body interactions form a connected network of
bundles. �e� Further stiffening of the threads ��̂
=1.0 and �̂=9.42� provides higher order within
the bundles. �f� Increasing the two-body attrac-
tion strength ��̂=3.0 and �̂=6.28� causes the net-
work structure to break into disconnected bundles
of threads.
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�Fig. 2�e��. In the case of strong two-body interaction ��̂
=3.0� coupled with stiff threads ��̂=9.42�, the system yields
disconnected structures �Fig. 2�f��, but this time these sub-
structures are highly ordered compared to the collapsed glob-
ules in Fig. 2�c�.

It is important to note that these Monte Carlo simulations
do not always guarantee thermodynamic equilibrium. In fact,
some of the snapshots in Fig. 2 represent a kinetically
trapped, glassy state. As the molecular threads form, the mo-
bility of the gelators participating in the threads is highly
reduced. Especially for the simulations with strong attractive
two-body interactions and/or high stiffness values the accep-
tance ratio for the Monte Carlo moves is dramatically re-
duced. Even though initially the typical acceptance ratio for
Monte Carlo moves is above 50%, in the final steady-state
configuration the acceptance ratio drops to values as low as
5% for some simulation parameters. In this respect, our re-
sults are closely connected to the kinetic gelation model
�39–45�.

The Monte Carlo method utilized in this study is based on
individual moves of the gelators. However, this leads to
simulation artifacts that can be seen in the collapsed globular
structures shown in Figs. 2�c� and 2�f�. The globular struc-
tures in these snapshots have a reduced mobility. In thermo-
dynamic equilibrium one would expect these globular struc-
tures to phase separate at low temperatures. However, due to
the inefficiency of the single gelator Monte Carlo moves,
these globular structures remain isolated in the simulation
box, and macroscopic phase separation cannot be observed.
These simulation artifacts can be overcome by introducing
cluster moves into the algorithm. Such cluster moves could
be designed to move the molecular threads, increasing the
efficiency of the simulation algorithm. In this study, in order
to keep the simulation of this complex system as simple as
possible such cluster moves are not implemented. Further-
more, nonlocal moves �such as cluster moves� could lead to
unphysical conformational changes, not suitable for studying
glassy networks such as in Fig. 2�d�.

In the remainder of this paper, we will look at the struc-
tural properties of this system to quantitatively understand

the role of thread stiffness ��� and attractive two-body inter-
action strength ��� on network formation. Since these simu-
lations involve simultaneous polymerization and network
formation, we need to analyze the structural properties of the
threads �i.e., polydispersity, persistence length� and the clus-
ters formed by such threads. In Fig. 3, the weighted averaged
thread length L̄w= �Li

2� / �Li� as a function of two-body inter-
action strength � and thread stiffness � is shown. For the
flexible threads ��̂=1.57� with weak two-body interactions
�̂
0.5 the length distribution is composed of a few ex-
tremely long threads and a lot of short segments. In fact, the
polydispersity index in such systems can go as high as 50,
which is in agreement with earlier predictions �33�. For flex-
ible threads, polymerization also leads to cyclic structures
and, together with the effect of attractive two-body interac-
tions, this leads to collapsed globules �Fig. 2�c��, and inhibits
thread growth. For simulations with �̂�3.14, three distinct
regimes are observed. When the two-body interaction
strength is weak compared to the thermal energy �̂
0.5, the
thread length is independent of �. In this linear regime, as the
stiffness is increased above �̂�3.14 the thread length de-
creases, since the loss of configurational entropy with in-
creasing thread stiffness favors shorter thread lengths. On the
other hand, when the two-body interaction is comparable to
the thermal energy ��̂�1.0�, a sharp increase in thread
length is observed. The formation of bundles prevents col-
lapse into globular structures, and since in a bundle a thread
has already lost most of its configurational entropy, the en-
thalpic gain due to the growth of the chain is sufficient to
increase the average thread length in the system. As for the
third distinct regime, the sharp decline in the average thread
length for �̂�1.0 suggests that two-body interactions play a
dominant role, thus leading to a collapsed structure.

The persistence length of the threads �l̄p� is another major
factor in determining the final state of the network structure,

and variation in l̄p as a function of the two-body interaction
strength and thread stiffness is shown in Fig. 4. The persis-

tence length l̄p of the threads is calculated from the exponen-
tial fit to the correlation function

FIG. 3. �Color online� Weighted average thread length as a func-
tion of two-body interaction strength for different values of thread
stiffness.

FIG. 4. �Color online� Persistence length of self-organized
threads. Depending on the strength of the thread stiffness two dif-
ferent regimes are observed.
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�u�r� · u�0�� = exp�− r/l̄p� , �4�

where u�r� is the unit vector along the bond connecting ge-
lator r to gelator r+1. The sum is taken over all the threads

in the system. With this definition l̄p actually measures the
persistence length in terms of the number of segments along
the thread. The numerical data for the correlation length are
cut off when a data point lies below zero, or �u�r� ·u�0�� is
less than �u�r+1� ·u�0��. Two different parameter regimes
are observed, depending on the thread stiffness. For simula-
tions with �̂	4.71, increasing �̂ monotonically decreases the
persistence length. In this regime the thread stiffness is soft
enough that the equilibrium properties of the threads are
mostly determined by the two-body interaction strength �. In
other words, the aggregation state of the threads determines
the persistence length. As we have seen in the snapshots
from the simulation of flexible threads �Fig. 2�c��, during
polymerization the threads simply collapse to form globules.
On the other hand, for �̂�6.28, a maximum in the thread
persistence length is observed. This sharp increase in the
persistence length is associated with the cooperative inter-
play of � and �, which favors aggregation of the threads into
bundles. The bundling of these supramolecular threads lead
to a higher persistence length, since within the bundles the
threads are completely stretched, almost in a crystalline state.
Over strengthening of � destroys this balance and causes a
sharp decrease of persistence length even for �̂�6.28.

As explained above, this system exhibits two simulta-
neous phenomena; namely, polymerization and network for-
mation. Besides the thread properties, we want to analyze the
nature of the contacts among threads due to two-body inter-
actions. In Fig. 5 the average number of two-body contacts
�n̄�� per gelator is plotted as a function of � and �. Unlike
our previous observations for thread properties, n̄� is almost
completely independent of the thread stiffness. At about �̂
�0.50 we see a sudden jump in n̄�, and this value converges
to �6–7 contacts per gelator as � is increased above the
thermal energy. The saturation value of n̄� is determined by
the coordination number and the interaction cutoff radius.

As we have seen in the snapshots of the system in many
cases the threads collapse into globular structures. Physical
bonds formed by two-body interactions among gelators of
the same thread lead to such collapsed structures. The per-
centage of such bonds also provides an insight into the
thread conformation and therefore network connectivity. In
Fig. 6 the ratio of contacts among gelators of different
threads to the total number of contacts �n̄�

� / n̄�� is plotted.
For stiff threads ��̂�6.28�, most of the two-body interac-
tions take place among gelators of different threads, and only
for high two-body interaction strength ��̂�2.5�, this fraction
decreases below �90%. This is the regime wherein the ma-
jority of the threads are extended, and the threads are packed
into bundles. As the stiffness of the threads is further low-
ered, the ratio n̄�

� / n̄� decreases. The simulations with �̂
=1.57 follow a quite different pattern compared with all
other stiffness values, the ratio n̄�

� / n̄� increases and con-
verges to 50% with increasing �. As explained before for �̂
=1.57, most of the threads polymerize to form very short
cyclic structures. The increase in the n̄�

� / n̄� ratio is associ-
ated with the aggregation of these short thread segments.

Percolation theory has been widely used to study network
formation in a variety of systems �46�. For a lattice model
where the network forming elements are only one lattice
point, one can define the gelation point as the divergence of
the average connected aggregate size. However, for a system
of chains in solution, one has to differentiate between phase
separation and network formation �25�. In such a system,
phase separation would also yield a connected structure, but
this structure would not necessarily yield a spanning net-
work. In our case, we not only have a dilute solution of
threads, but in addition, the thread length is not constant. In
many cases, the system size is not sufficiently big to measure
a statistically valid gelation point. Therefore, rather than
measuring the gelation point, we have used the following
method to quantify the connectivity of the network.

In any given network, connectivity can be calculated by
using an adjacency �connectivity� matrix �47�. Given a net-
work of N nodes one can form an N by N matrix such that
the ijth element of this matrix is one if there is at least one

FIG. 5. �Color online� Average number of two-body interactions
per gelator as a function of � for different values of �.

FIG. 6. �Color online� Fraction of two-body interactions among
gelators of different threads to the total number of two-body
interactions.
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direct path from node i to node j or if i= j �Eq. �5��. Let us
call this matrix as the primary connectivity matrix �P�. Using
this matrix one can obtain higher connectivity maps of this
network, by simply raising P to higher powers. For example,
P2 provides a new matrix, where the elements show the num-
ber of different paths between any two nodes by taking up to
two steps. P�N−1� yields the global connectivity matrix �G�,
where the elements of G are nonzero if there is at least one
path that connects node i to node j �Eq. �6��:

Pij = 	1, i = j ,

1, threads i and j directly connected,

0, otherwise,

 �5�

Gij = ��0, path i → j exists,

0, otherwise.
� �6�

Since we are interested in the connectivity of the threads,
we will work in the dual space. In the dual space represen-
tation, each thread will be considered as a node �vertex� and
physical bonds that connect threads to each other will be
considered as paths �edges�. A system composed of N threads
can then be mapped on to a network of N nodes, where
two-body interactions form the connecting paths among the
threads �nodes�. Whether two threads are connected at a
single point or they touch at more than one point �entangled�
does not change the contribution of these threads to the glo-
bal connectivity. For any given snapshot of the system, in our
analysis two threads are considered to have a stable contact
only if the total energy of the two-body interactions among
them is �3kBT. Thermal fluctuations lead to formation of
many contacts during the simulation. If the two-body inter-
action strength is strong enough and the neighboring gelators
along the threads are reoriented, this leads to a sequence of
two-body interactions along the threads. In this case, even if
some of these contacts break, the surrounding contacts pre-
vent rapid diffusion of gelators, and therefore increase the
chances for reformation of the broken contact. Only such

stable contacts lead to the formation of structures as we have
seen in Figs. 2�c�–2�f�. On the other hand, contacts formed in
a system with weak two-body interactions �Fig. 2�b��, only
last for a few simulation steps and are considered to be un-
stable in terms of the structural integrity of the network. P
and G can be used to quantify the degree of connectivity in
any given network. One can define a primary connectivity
number �P� as

P = �
ij

Pij�/N − 1 �7�

�−1 is for excluding the self connectivity�, and a global con-
nectivity number �G� as

G = �
i
j

Gij�/�N�N − 1�/2� . �8�

The value of P is calculated from a snapshot of the
equilibrated system for any given set of molecular param-
eters. P yields the average number of physical contacts per
thread. For all values of thread stiffness �, the P curves
have a maximum around �̂�1.0 �Fig. 7�. The maximum
primary connectivity values highly depend on the thread
stiffness �, increasing with increasing thread stiffness and
saturating as one reaches high � values. For �̂
0.5 the ther-
mal energy does not allow any stable connections; therefore,
the system is composed of disconnected threads. The maxi-
mum observed around �̂�1.0 is an indication of stable two-
body interactions. As we have explained above, the forma-
tion of bundles enhances organization of the threads and
therefore we observe an increased P. Upon further increase
of the two-body interaction strength, this fine balance is de-
stroyed and the P value declines sharply.

The global connectivity �G� values �Fig. 8� provide a
quantitative value for the overall connectivity in the equili-
brated system. Unlike the previous analysis, where the re-
sults were averaged over all threads, the G values represent
only an average over the final state of three different runs for
each given parameter set. The global connectivity G can

FIG. 7. �Color online� Primary connectivity value �P� as a
function of two-body interaction strength � for different values of
thread stiffness �. P shows a maximum at ��1, which suggests
the influence of bundling on connectivity of the threads.

FIG. 8. �Color online� Global connectivity number as a function
of two-body interaction strength � for different values of thread
stiffness �. Increasing � extends the range of � values that yield a
highly connected network.
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vary between 0 and 1. G=0 represents the case in which all
threads in the system are isolated and do not have any stable
contacts with any of the neighboring threads. On the other
hand, G=1 represents a system wherein all the threads are
part of a single network. In other words, for G=1 there
exists at least one path between any two threads in the sys-
tem. Except for �̂=1.57, for all � values we observe a maxi-
mum in the global network connectivity. The range of two-
body interaction values that yield a highly connected
network increases with the stiffness of the threads. As ob-
served in the snapshots, for extremely low or high � values a
connected network does not exist. The drop in the global
connectivity for �̂	4.71 is not well understood and is cur-
rently being investigated. For low �, thermal energy does not
allow any stable two-body interactions, and for very high �
the threads collapse to form globular disconnected structures.
Only at optimum values of � and � is a highly connected
network structure observed.

IV. CONCLUSIONS

We have used Monte Carlo simulations to study the as-
sembly of supramolecular threads into networks. The persis-
tence length of the threads was found to be strongly affected
not only by stiffness but also by the strength of interactions
among thread segments. The relative values of stiffness and
interaction strength determine if threads collapse or create
bundles. Only in the presence of sufficiently long threads and
bundle formation can these systems assemble into networks
of high connectivity.
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